You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century.
Striking when hot, and more when hotter
Lightning occurs more frequently when it is hotter than when it is colder, but how much more lightning should we expect as global temperatures increase? Currently there are around 25 million lightning strikes per year. Romps et al. constructed a proxy based on the energy available to make air rise in the atmosphere and on precipitation rates to model the frequency of lightning strikes across the continental United States. They predict that the number of lightning strikes will increase by about 12% for every degree of rise in global average air temperature.
Science, this issue p. 851