You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
We report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating –O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold active site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.
Dispersing catalytic gold as widely as possible
In order to maximize the activity of precious metals in catalysis, it is important to place the metal on some support with a high surface area (such as a zeolite) and to maintain the metal as small clusters or even atoms to expose as much metal as possible. The latter goal is more readily achieved with oxides of reducible metals such as cerium or titanium than with the aluminum and silicon oxides that make up most zeolites and mesoporous oxides. Yang et al. show that sodium and potassium can stabilize gold along with hydroxyl and oxo groups to create highly active catalysts for the water-gas shift reaction at low temperatures, a reaction that can be useful in applications such as fuel cells.
Science, this issue p. 1498