Report

Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides

See allHide authors and affiliations

Science  19 Dec 2014:
Vol. 346, Issue 6216, pp. 1498-1501
DOI: 10.1126/science.1260526

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Dispersing catalytic gold as widely as possible

In order to maximize the activity of precious metals in catalysis, it is important to place the metal on some support with a high surface area (such as a zeolite) and to maintain the metal as small clusters or even atoms to expose as much metal as possible. The latter goal is more readily achieved with oxides of reducible metals such as cerium or titanium than with the aluminum and silicon oxides that make up most zeolites and mesoporous oxides. Yang et al. show that sodium and potassium can stabilize gold along with hydroxyl and oxo groups to create highly active catalysts for the water-gas shift reaction at low temperatures, a reaction that can be useful in applications such as fuel cells.

Science, this issue p. 1498