You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
I'll see your program and raise you mine
One of the fundamental differences between playing chess and two-handed poker is that the chessboard and the pieces on it are visible throughout the entire game, but an opponent's cards in poker are private. This informational deficit increases the complexity and the uncertainty in calculating the best course of action—to raise, to fold, or to call. Bowling et al. now report that they have developed a computer program that can do just that for the heads-up variant of poker known as Limit Texas Hold 'em (see the Perspective by Sandholm).
Abstract
Poker is a family of games that exhibit imperfect information, where players do not have full knowledge of past events. Whereas many perfect-information games have been solved (e.g., Connect Four and checkers), no nontrivial imperfect-information game played competitively by humans has previously been solved. Here, we announce that heads-up limit Texas hold’em is now essentially weakly solved. Furthermore, this computation formally proves the common wisdom that the dealer in the game holds a substantial advantage. This result was enabled by a new algorithm, CFR+, which is capable of solving extensive-form games orders of magnitude larger than previously possible.