Chirality density wave of the “hidden order” phase in URu2Si2

See allHide authors and affiliations

Science  20 Mar 2015:
Vol. 347, Issue 6228, pp. 1339-1342
DOI: 10.1126/science.1259729

Uncovering the symmetry of a hidden order

Cooling matter generally makes it more ordered and may induce dramatic transitions: Think of water becoming ice. With increased order comes loss of symmetry; water in its liquid form will look the same however you rotate it, whereas ice will not. Kung et al. studied the symmetry properties of a mysteriously ordered phase of the material URu2Si2 that appears at 17.5 K. They shone laser light on the crystal and studied the shifts in the frequency of the light. The electron orbitals of the uranium had a handedness to them that alternated between the atomic layers.

Science, this issue p. 1339


A second-order phase transition in a physical system is associated with the emergence of an “order parameter” and a spontaneous symmetry breaking. The heavy fermion superconductor URu2Si2 has a “hidden order” (HO) phase below the temperature of 17.5 kelvin; the symmetry of the associated order parameter has remained ambiguous. Here we use polarization-resolved Raman spectroscopy to specify the symmetry of the low-energy excitations above and below the HO transition. We determine that the HO parameter breaks local vertical and diagonal reflection symmetries at the uranium sites, resulting in crystal field states with distinct chiral properties, which order to a commensurate chirality density wave ground state.

View Full Text