A strong magnetic field in the jet base of a supermassive black hole

See allHide authors and affiliations

Science  17 Apr 2015:
Vol. 348, Issue 6232, pp. 311-314
DOI: 10.1126/science.aaa1784

The polarized mark of magnetic fields

Powerful twin jets of plasma often reach more than tens of thousands of light-years from their base in an active galactic nucleus (AGN). Astronomers are still at work investigating what can corral the jets so tightly and propel them so far. Martí-Vidal et al. may have found the answer hiding in polarized light signals that show evidence of a phenomenon called Faraday rotation. This measure can indicate the strength of the magnetic field present, which for the AGN PKS 1830-211 is as strong as a few Gauss. The knowledge that magnetic fields have a driving role brings us closer to understanding this phenomenon.

Science, this issue p. 311


Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830−211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole.

View Full Text

Stay Connected to Science