Systemic administration of epothilone B promotes axon regeneration after spinal cord injury

See allHide authors and affiliations

Science  17 Apr 2015:
Vol. 348, Issue 6232, pp. 347-352
DOI: 10.1126/science.aaa2958

Progress toward fixing a broken back?

Axon regeneration after a spinal cord injury requires interference with neuronal mechanisms to promote axon extension and early suppression of scar formation. Microtubule stabilization could provide, in principle, a basis for such intervention. Ruschel et al. used animal models of spinal cord injury, time-lapse imaging in vivo, primary neuronal cultures, and behavioral studies to tackle this challenge (see the Perspective by Tran and Silver). They showed that epothilone B, a U.S. Food and Drug Administration–approved microtubule-stabilizing drug that can cross the blood-brain barrier, does promote functional axon regeneration, even after injury.

Science, this issue p. 347; see also p. 285


After central nervous system (CNS) injury, inhibitory factors in the lesion scar and poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier–permeable microtubule-stabilizing drug, epothilone B (epoB), decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug-elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury.

View Full Text

Stay Connected to Science