You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Changing shape to destroy RNA
Clustered regularly interspaced short palindromic repeats (CRISPRs) together with CRISPR-associated (Cas) proteins form an adaptive immune system that helps bacteria and archaea defend themselves against invading viruses and plasmids. CRISPR RNAs (crRNAs) target CRISPR-Cas protein complexes to the invaders, bringing about their destruction. Taylor et al. used cryo–electron microscopy to determine the structure of a 12-subunit CRISPR-Cas protein complex with crRNA from Thermus thermophilus, in the presence and absence of single-stranded target RNA. Binding to the target RNA causes a change in shape of the CRISPR-Cas complex that results in target recognition and destruction.
Science, this issue p. 581
Abstract
Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)–associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo–electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.