Creating and probing electron whispering-gallery modes in graphene

See allHide authors and affiliations

Science  08 May 2015:
Vol. 348, Issue 6235, pp. 672-675
DOI: 10.1126/science.aaa7469

A circular route to confine electrons

Physical barriers are used to confine waves. Whether it is harbor walls for sea waves, a glass disk for light, or the “whispering gallery” circular chamber walls in St. Paul's Cathedral for sound, the principle of confinement—reflection—is the same. Zhao et al. used that same principle to confine electrons in a nanoscale circular cavity in graphene. Periodic patterns within the cavity were associated with an electronic wave version of whispering gallery modes. The tunability of the cavity size may provide a route for the manipulation of electrons in graphene and similar materials.

Science, this issue p. 672


The design of high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Complementing previous approaches to confine electronic waves by carefully positioned adatoms at clean metallic surfaces, we demonstrate an approach inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene’s gate-tunable light-like carriers, we create whispering-gallery mode (WGM) resonators defined by circular pn junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range. The WGM-type confinement and associated resonances are a new addition to the quantum electron-optics toolbox, paving the way to develop electronic lenses and resonators.

View Full Text

Stay Connected to Science