You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Experimental recovery from retrograde amnesia
When memory researchers induce amnesia, they normally assume that the manipulations prevent the memory engram from effective encoding at consolidation. In accordance with this, Ryan et al. found that after the injection of protein synthesis inhibitors, animals could not retrieve a memory. However, to their surprise, the memory could nevertheless be reactivated by light-induced activation of the neurons tagged during conditioning. Increased synaptic strength that is the result of cellular consolidation is thus not a critical requisite for storing a memory.
Science, this issue p. 1007
Abstract
Memory consolidation is the process by which a newly formed and unstable memory transforms into a stable long-term memory. It is unknown whether the process of memory consolidation occurs exclusively through the stabilization of memory engrams. By using learning-dependent cell labeling, we identified an increase of synaptic strength and dendritic spine density specifically in consolidated memory engram cells. Although these properties are lacking in engram cells under protein synthesis inhibitor–induced amnesia, direct optogenetic activation of these cells results in memory retrieval, and this correlates with retained engram cell–specific connectivity. We propose that a specific pattern of connectivity of engram cells may be crucial for memory information storage and that strengthened synapses in these cells critically contribute to the memory retrieval process.