Single-cell–initiated monosynaptic tracing reveals layer-specific cortical network modules

See allHide authors and affiliations

Science  03 Jul 2015:
Vol. 349, Issue 6243, pp. 70-74
DOI: 10.1126/science.aab1687

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Tracing cells that project to one neuron

Feature extraction is a prominent characteristic of cortical neurons involved in the early stages of sensory processing. Wertz et al. retrogradely marked an injected neuron and its direct inputs to reveal the network mechanisms that mediate their response. Neurons within each presynaptic network layer of single direction-selective cells showed similar motion direction preferences. In some networks, layer-specific functional modules were identical to the orientation preference of the postsynaptic neuron. Presynaptic neurons, however, displayed a general bias toward the stimulus feature that elicited a response in the postsynaptic neuron.

Science, this issue p. 70


Individual cortical neurons can selectively respond to specific environmental features, such as visual motion or faces. How this relates to the selectivity of the presynaptic network across cortical layers remains unclear. We used single-cell–initiated, monosynaptically restricted retrograde transsynaptic tracing with rabies viruses expressing GCaMP6s to image, in vivo, the visual motion–evoked activity of individual layer 2/3 pyramidal neurons and their presynaptic networks across layers in mouse primary visual cortex. Neurons within each layer exhibited similar motion direction preferences, forming layer-specific functional modules. In one-third of the networks, the layer modules were locked to the direction preference of the postsynaptic neuron, whereas for other networks the direction preference varied by layer. Thus, there exist feature-locked and feature-variant cortical networks.

View Full Text

Stay Connected to Science