You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Synthesizing more sustainable plastics
Zeolites can help synthesize cheaper plastic precursors from biologically sourced feedstocks. Producing sustainable plastics must compete with more cost-effective petrochemical-based synthesis routes. Dusselier et al. developed a zeolite-based strategy to catalyze the transformation of microbially produced lactic acid into lactide, a difficult-to-synthesize precursor of biodegradable polylactic acid plastics. The selectivity of nearly 80% is based on active site spatial confinement in the zeolite micropores. This step substantially simplifies current high-cost synthesis routes and generates nearly zero waste using current reactor technologies.
Science, this issue p. 78
Abstract
Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling.