A protein fold switch joins the circadian oscillator to clock output in cyanobacteria

See allHide authors and affiliations

Science  17 Jul 2015:
Vol. 349, Issue 6245, pp. 324-328
DOI: 10.1126/science.1260031

Biochemical basis of a 24-hour clock

Circadian clocks keep organisms in synch with such daily cycles as illumination, activity, and food availability. The circadian clock in cyanobacteria has the necessary 24-hour period despite its three component proteins having biochemical activities that occur on a much faster time scale. Abe et al. focused on the cyanobacterial clock component KaiC, an adenosine triphosphatase (ATPase) that can autophosphorylate and autodephosphorylate. The slow ATPase activity of KaiC, which is linked to a peptide isomerisation, provided the slow kinetics that set the speed of the 24-hour clock. Chang et al. found that another clock component, KaiB, also has slow changes in its protein conformation that help to set the oscillation period of the clock and its signaling output.

Science, this issue pp. 312 and 324


Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth’s rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator.

View Full Text