A surprising immune twist for RORC
The immune system needs its full array of soldiers—including cells and the molecules they secrete—to optimally protect the host. When this isn't the case, minor infections can become chronic or even deadly. Markle et al. report the discovery of seven individuals carrying loss-of-function mutations in RORC, which encodes the transcription factors RORγ and RORγT. These individuals lacked immune cells that produce the cytokine interleukin-17, causing them to suffer from chronic candidiasis. RORC-deficient individuals also exhibited impaired immunity to mycobacterium, probably due to reduced production of the cytokine interferon-γ, a molecule not known to require RORC for its induction.
Science, this issue p. 606
Abstract
Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-γ (IFN-γ) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORγ and RORγT isoforms resulted in the absence of IL-17A/F–producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORγ- and RORγT-deficient individuals also displayed an impaired IFN-γ response to Mycobacterium. This principally reflected profoundly defective IFN-γ production by circulating γδ T cells and CD4+CCR6+CXCR3+ αβ T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORγ, RORγT, or both.