TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD

See allHide authors and affiliations

Science  07 Aug 2015:
Vol. 349, Issue 6248, pp. 650-655
DOI: 10.1126/science.aab0983

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Mechanistic surprise in ALS-FTD

Intense efforts have focused on identifying therapeutic targets for misfolded proteins that cause amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ling et al. show that the main culprit of proteinopathy, TDP-43, acts as a splicing suppressor of nonconserved cryptic exons. These exons often disrupt messenger RNA translation and promote nonsense-mediated decay. When TDP-43 was depleted in cells, a set of nonconserved cryptic exons spliced into target RNAs, leading to down-regulation of corresponding proteins critical for cellular function. Repression of cryptic exons prevented cell death in TDP-43–null cells. Because brains of ALS-FTD cases showed evidence of missplicing of cryptic exons, failure in these regions may underlie TDP-43 proteinopathy.

Science, this issue p. 650


Cytoplasmic aggregation of TDP-43, accompanied by its nuclear clearance, is a key common pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, a limited understanding of this RNA-binding protein (RBP) impedes the clarification of pathogenic mechanisms underlying TDP-43 proteinopathy. In contrast to RBPs that regulate splicing of conserved exons, we found that TDP-43 repressed the splicing of nonconserved cryptic exons, maintaining intron integrity. When TDP-43 was depleted from mouse embryonic stem cells, these cryptic exons were spliced into messenger RNAs, often disrupting their translation and promoting nonsense-mediated decay. Moreover, enforced repression of cryptic exons prevented cell death in TDP-43–deficient cells. Furthermore, repression of cryptic exons was impaired in ALS-FTD cases, suggesting that this splicing defect could potentially underlie TDP-43 proteinopathy.

View Full Text

Stay Connected to Science