Visualizing edge states with an atomic Bose gas in the quantum Hall regime

See allHide authors and affiliations

Science  25 Sep 2015:
Vol. 349, Issue 6255, pp. 1514-1518
DOI: 10.1126/science.aaa8515

Visualizing edge states in atomic systems

Visualizing edge states in atomic systems Simulating the solid state using ultracold atoms is an appealing research approach. In solids, however, the charged electrons are susceptible to an external magnetic field, which curves their trajectories and makes them skip along the edge of the sample. To observe this phenomenon with cold atoms requires an artificial magnetic field to have a similar effect on the neutral atoms (see the Perspective by Celi and Tarruell). Stuhl et al. obtained skipping orbits with bosonic atoms using a lattice that consisted of an array of atoms in one direction and three internal atomic spin states in the other. In a complementary experiment, Mancini et al. observed similar physics with fermionic atoms.

Science, this issue pp. 1514 and 1510; see also p. 1450


Bringing ultracold atomic gases into the quantum Hall regime is challenging. We engineered an effective magnetic field in a two-dimensional lattice with an elongated-strip geometry, consisting of the sites of an optical lattice in the long direction and of three internal atomic spin states in the short direction. We imaged the localized states of atomic Bose-Einstein condensates in this strip; via excitation dynamics, we further observed both the skipping orbits of excited atoms traveling down the system’s edges, analogous to edge magnetoplasmons in two-dimensional electron systems, and a dynamical Hall effect for bulk excitations. Our technique involves minimal heating, which will be important for spectroscopic measurements of the Hofstadter butterfly and realizations of Laughlin’s charge pump.

View Full Text

Stay Connected to Science