Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades

See allHide authors and affiliations

Science  25 Sep 2015:
Vol. 349, Issue 6255, pp. 1525-1529
DOI: 10.1126/science.aac9283

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A clean and green approach to amines

Enzymes evolved to operate in water and to modify their substrates using comparatively nontoxic reagents. Thus, a major advantage of applying enzymes to synthetic chemistry is their compatibility with environmentally benign conditions. Mutti et al. report that two enzymes—alcohol and amine dehydrogenases—can operate in tandem to convert alcohols to amines. The reaction proceeds with ammonium as the only input and water as the only byproduct. The mechanism relies on consecutive oxidation and reduction steps, with hydrogen shuttled by a nicotinamide coenzyme.

Science, this issue p. 1525


α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds at industrial scale. We present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on a combination of two enzymes: an alcohol dehydrogenase (from Aromatoleum sp., Lactobacillus sp., or Bacillus sp.) operating in tandem with an amine dehydrogenase (engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols, yielding up to 96% conversion and 99% enantiomeric excess. Primary alcohols were aminated with high conversion (up to 99%). This redox self-sufficient cascade possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product.

View Full Text

Stay Connected to Science