You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Stellar oscillations as magnetic probes
Unlike magnetic fields on the surfaces of stars, those within a star have so far remained difficult to observe. Fuller et al. have developed a method of delving into the magnetic depths by exploiting the oscillations of red giant stars. A high magnetic field can cause sound waves to become trapped within the central regions of the star, damping certain vibration modes. Using seismological techniques, this suppression can help infer the core magnetic field for several red giants.
Science, this issue p. 423
Abstract
Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~105 gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈107 gauss.