Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive

See allHide authors and affiliations

Science  23 Oct 2015:
Vol. 350, Issue 6259, pp. 442-445
DOI: 10.1126/science.aad0836

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Mouse work may lead to male contraceptive

Unintended pregnancies are a major health issue worldwide. Although oral contraceptives were developed decades ago for use in women, there are no male oral contraceptives. Miyata et al. show that genetic deletion or drug inhibition of sperm-specific calcineurin enzymes in mice cause male sterility (see the Perspective by Castaneda and Matzuk). Although calcineurin inhibitors resulted in male infertility within 2 weeks, fertility recovered 1 week after halting drug administration. Because the sperm-specific calcineuin complex is also found in humans, its inhibition may be a strategy for developing reversible male contraceptives.

Science, this issue p. 442, see also p. 385


Calcineurin inhibitors, such as cyclosporine A and FK506, are used as immunosuppressant drugs, but their adverse effects on male reproductive function remain unclear. The testis expresses somatic calcineurin and a sperm-specific isoform that contains a catalytic subunit (PPP3CC) and a regulatory subunit (PPP3R2). We demonstrate herein that male mice lacking Ppp3cc or Ppp3r2 genes (knockout mice) are infertile, with reduced sperm motility owing to an inflexible midpiece. Treatment of mice with cyclosporine A or FK506 creates phenocopies of the sperm motility and morphological defects. These defects appear within 4 to 5 days of treatment, which indicates that sperm-specific calcineurin confers midpiece flexibility during epididymal transit. Male mouse fertility recovered a week after we discontinued treatment. Because human spermatozoa contain PPP3CC and PPP3R2 as a form of calcineurin, inhibition of this sperm-specific calcineurin may lead to the development of a reversible male contraceptive that would target spermatozoa in the epididymis.

View Full Text

Stay Connected to Science