Gene essentiality and synthetic lethality in haploid human cells

See allHide authors and affiliations

Science  27 Nov 2015:
Vol. 350, Issue 6264, pp. 1092-1096
DOI: 10.1126/science.aac7557

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Zeroing in on essential human genes

More powerful genetic techniques are helping to define the list of genes required for the life of a human cell. Two papers used the CRISPR genome editing system and a gene trap method in haploid human cells to screen for essential genes (see the Perspective by Boone and Andrews). Wang et al.'s analysis of multiple cell lines indicates that it may be possible to find tumor-specific dependencies on particular genes. Blomen et al. investigate the phenomenon in which nonessential genes are required for fitness in the absence of another gene. Hence, complexity rather than robustness is the human strategy.

Science, this issue p. 1096 and p. 1092; see also p. 1028


Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We used extensive mutagenesis in haploid human cells to identify approximately 2000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells, we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic cross-talk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a phosphatidylinositol 4-kinase β adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology.

View Full Text

Stay Connected to Science