You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Cichlids diverge within a crater lake
It is not clear how populations diversify and new species form at the genomic level, especially when they coexist in the same location. Malinsky et al. investigated how two ecomorphs of cichlid fish in a small lake in Tanzania are diversifying relative to each other. Although there is gene flow between the two forms, major regions of genetic divergence, known as genomic islands, separate the populations. Within these islands, the authors found genes likely to be associated with mate choice, supporting the idea that genetic changes related to breeding preferences are the first to diverge during speciation.
Science, this issue p. 1493
Abstract
The genomic causes and effects of divergent ecological selection during speciation are still poorly understood. Here we report the discovery and detailed characterization of early-stage adaptive divergence of two cichlid fish ecomorphs in a small (700 meters in diameter) isolated crater lake in Tanzania. The ecomorphs differ in depth preference, male breeding color, body shape, diet, and trophic morphology. With whole-genome sequences of 146 fish, we identified 98 clearly demarcated genomic “islands” of high differentiation and demonstrated the association of genotypes across these islands with divergent mate preferences. The islands contain candidate adaptive genes enriched for functions in sensory perception (including rhodopsin and other twilight-vision–associated genes), hormone signaling, and morphogenesis. Our study suggests mechanisms and genomic regions that may play a role in the closely related mega-radiation of Lake Malawi.