Direct observation of collective modes coupled to molecular orbital–driven charge transfer

See allHide authors and affiliations

Science  18 Dec 2015:
Vol. 350, Issue 6267, pp. 1501-1505
DOI: 10.1126/science.aab3480

The making of a molecular movie

Phase transitions familiar from everyday life, such as boiling or melting, are caused by changing the temperature. In the laboratory, however, researchers can also change the phase of a material by shining intense light on it. During such transitions, changes occur in both the electronic and lattice structure of the material. Ishikawa et al. used ultrafast optical and electron diffraction probes to monitor both types of change simultaneously during a photo-induced phase transition in a molecular crystal. The resulting molecular movies showed expansion of the intermolecular distance, flattening of the molecules, and tilting of molecular dimers.

Science, this issue p. 1501


Correlated electron systems can undergo ultrafast photoinduced phase transitions involving concerted transformations of electronic and lattice structure. Understanding these phenomena requires identifying the key structural modes that couple to the electronic states. We report the ultrafast photoresponse of the molecular crystal Me4P[Pt(dmit)2]2, which exhibits a photoinduced charge transfer similar to transitions between thermally accessible states, and demonstrate how femtosecond electron diffraction can be applied to directly observe the associated molecular motions. Even for such a complex system, the key large-amplitude modes can be identified by eye and involve a dimer expansion and a librational mode. The dynamics are consistent with the time-resolved optical study, revealing how the electronic, molecular, and lattice structures together facilitate ultrafast switching of the state.

View Full Text

Stay Connected to Science