An essential cell cycle regulation gene causes hybrid inviability in Drosophila

See allHide authors and affiliations

Science  18 Dec 2015:
Vol. 350, Issue 6267, pp. 1552-1555
DOI: 10.1126/science.aac7504

Essential genes and species incompatibilities

Crosses between two fruit fly species, Drosophila melanogaster and D. simulans, result in hybrid progeny that are all female. Although some of the genes responsible for this species barrier are known, the full complement of molecular determinants that lead to inviable males has remained mysterious. Phadnis et al. used mutagenesis and a sequencing-based genomic screen to link hybrid inviability to the cell cycle. The inviable males result from an interaction between three genes, one of which is essential, which precluded its identification with standard genetic screens. This strategy to identify speciation genes can be applied to other model and nonmodel systems.

Science, this issue p. 1552


Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers, such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle–regulation gene as the cause of male inviability in hybrids resulting from a cross between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and nonmodel systems.

View Full Text

Stay Connected to Science