Rationally engineered Cas9 nucleases with improved specificity

See allHide authors and affiliations

Science  01 Jan 2016:
Vol. 351, Issue 6268, pp. 84-88
DOI: 10.1126/science.aad5227

Making the correct cut

The CRISPR/Cas system is a prokaryotic immune system that targets and cuts out foreign DNA in bacteria. It has been adopted for gene editing because it can be designed to recognize and cut specific locations in the genome. A challenge in developing clinical applications is the potential for off-target effects that could result in DNA cleavage at the wrong locations. Slaymaker et al. used structure-guided engineering to improve the specificity of Streptococcus pyogenes Cas9 (SpCas9). They identified enhanced-specificity variants (eSpCas9) that display reduced off-target cleavage while maintaining robust on-target activity

Science, this issue p. 84


The RNA-guided endonuclease Cas9 is a versatile genome-editing tool with a broad range of applications from therapeutics to functional annotation of genes. Cas9 creates double-strand breaks (DSBs) at targeted genomic loci complementary to a short RNA guide. However, Cas9 can cleave off-target sites that are not fully complementary to the guide, which poses a major challenge for genome editing. Here, we use structure-guided protein engineering to improve the specificity of Streptococcus pyogenes Cas9 (SpCas9). Using targeted deep sequencing and unbiased whole-genome off-target analysis to assess Cas9-mediated DNA cleavage in human cells, we demonstrate that “enhanced specificity” SpCas9 (eSpCas9) variants reduce off-target effects and maintain robust on-target cleavage. Thus, eSpCas9 could be broadly useful for genome-editing applications requiring a high level of specificity.

View Full Text

Stay Connected to Science