Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption

See allHide authors and affiliations

Science  29 Jan 2016:
Vol. 351, Issue 6272, pp. 475-478
DOI: 10.1126/science.aad8868

Nanoclusters just by adding CO

The most closely packed surfaces of transition metals are usually stable under vacuum, but during catalytic reactions, energetic changes that result from adsorbing molecules could change the surface structure. Eren et al. present an extreme example for carbon monoxide (CO) adsorption on the (111) surface of copper at very low partial pressures. The surface decomposed into small nanoclusters (most containing 3 or 19 atoms). The surface was more reactive than the original and, for example, could dissociate adsorbed water at room temperature.

Science, this issue p. 475


The (111) surface of copper (Cu), its most compact and lowest energy surface, became unstable when exposed to carbon monoxide (CO) gas. Scanning tunneling microscopy revealed that at room temperature in the pressure range 0.1 to 100 Torr, the surface decomposed into clusters decorated by CO molecules attached to edge atoms. Between 0.2 and a few Torr CO, the clusters became mobile in the scale of minutes. Density functional theory showed that the energy gain from CO binding to low-coordinated Cu atoms and the weakening of binding of Cu to neighboring atoms help drive this process. Particularly for softer metals, the optimal balance of these two effects occurs near reaction conditions. Cluster formation activated the surface for water dissociation, an important step in the water-gas shift reaction.

View Full Text

Stay Connected to Science