You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Consequences conferred at a distance
Migratory animals have adapted to life in multiple, sometimes very different environments. Thus, they may show particularly complex responses as climates rapidly change. Van Gils et al. show that body size in red knot birds has been decreasing as their Arctic breeding ground warms (see the Perspective by Wikelski and Tertitski). However, the real toll of this change appears not in the rapidly changing northern part of their range but in the apparently more stable tropical wintering range. The resulting smaller, short-billed birds have difficulty reaching their major food source, deeply buried mollusks, which decreases the survival of birds born during particularly warm years.
Abstract
Reductions in body size are increasingly being identified as a response to climate warming. Here we present evidence for a case of such body shrinkage, potentially due to malnutrition in early life. We show that an avian long-distance migrant (red knot, Calidris canutus canutus), which is experiencing globally unrivaled warming rates at its high-Arctic breeding grounds, produces smaller offspring with shorter bills during summers with early snowmelt. This has consequences half a world away at their tropical wintering grounds, where shorter-billed individuals have reduced survival rates. This is associated with these molluscivores eating fewer deeply buried bivalve prey and more shallowly buried seagrass rhizomes. We suggest that seasonal migrants can experience reduced fitness at one end of their range as a result of a changing climate at the other end.