Peering through Jupiter’s clouds with radio spectral imaging

See allHide authors and affiliations

Science  03 Jun 2016:
Vol. 352, Issue 6290, pp. 1198-1201
DOI: 10.1126/science.aaf2210

A radio view into Jupiter's atmosphere

Jupiter's atmosphere is a complex system of belts, layers, storms, and cloud systems. de Pater et al. used Earth-bound radio observations to peer beneath its surface. Previous radio studies have been limited to average properties at each latitude, but the new observations allow a full two-dimensional view. This can be related to features (such as storms) seen in visible or infrared images. The results aid our understanding of gas giant atmospheres and will provide important context for the Juno spacecraft that arrives at Jupiter in July 2016.

Science, this issue p. 1198


Radio wavelengths can probe altitudes in Jupiter’s atmosphere below its visible cloud layers. We used the Very Large Array to map this unexplored region down to ~8 bar, ~100 kilometers below the visible clouds. Our maps reveal a dynamically active planet at pressures less than 2 to 3 bar. A radio-hot belt exists, consisting of relatively transparent regions (a low ammonia concentration, NH3 being the dominant source of opacity) probing depths to over ~8 bar; these regions probably coincide with 5-micrometer hot spots. Just to the south we distinguish an equatorial wave, bringing up ammonia gas from Jupiter’s deep atmosphere. This wave has been theorized to produce the 5-micrometer hot spots; we observed the predicted radio counterpart of such hot spots.

View Full Text

Stay Connected to Science