Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system

See allHide authors and affiliations

Science  10 Jun 2016:
Vol. 352, Issue 6291, pp. 1326-1329
DOI: 10.1126/science.aaf6463

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

One size does not fit all

Oligodendrocytes are best known for their ability to myelinate brain neurons, thus increasing the speed of signal transmission. Marques et al. surveyed oligodendrocytes of developing mice and found unexpected heterogeneity. Transcriptional analysis identified 12 populations, ranging from precursors to mature oligodendrocytes. Transcriptional profiles diverged as the oligodendrocytes matured, building distinct populations. One population was responsive to motor learning, and another, with a different transcriptome, traveled along blood vessels.

Science, this issue p. 1326


Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra+ oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra+ population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.

View Full Text

Stay Connected to Science