You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Going with the flow
The interstitial spaces of the brain are filled with cerebrospinal fluid (CSF). Faubel et al. studied fluid transport in the third ventricle of the brain of mice, rats, and pigs. Sophisticated, state-of-the-art fluid dynamic studies revealed a complex pattern of cilia beating that leads to an intricate network of “highways” of CSF flow. This flow rapidly and efficiently transports and partitions CSF.
Science, this issue p. 176
Abstract
Cerebrospinal fluid conveys many physiologically important signaling factors through the ventricular cavities of the brain. We investigated the transport of cerebrospinal fluid in the third ventricle of the mouse brain and discovered a highly organized pattern of cilia modules, which collectively give rise to a network of fluid flows that allows for precise transport within this ventricle. We also discovered a cilia-based switch that reliably and periodically alters the flow pattern so as to create a dynamic subdivision that may control substance distribution in the third ventricle. Complex flow patterns were also present in the third ventricles of rats and pigs. Our work suggests that ciliated epithelia can generate and maintain complex, spatiotemporally regulated flow networks.