Structural basis for integration of GluD receptors within synaptic organizer complexes

See allHide authors and affiliations

Science  15 Jul 2016:
Vol. 353, Issue 6296, pp. 295-299
DOI: 10.1126/science.aae0104

Transmitting signals across the synapse

Glutamate receptors located on neuronal cells play a role in mediating electrical signals at excitatory synapses. These glutamatergic synapses are extremely important for nearly all cognitive functions. Elegheert et al. analyzed a complex that bridges the synapse, comprising β-neurexin 1, a cell adhesion molecule on the surface of presynaptic axons; cerebellin 1, a synaptic organizer; and the postsynaptic glutamate receptor GluD2. The structural and functional analysis provides insight into the mechanism of synaptic signaling.

Science, this issue p. 295


Ionotropic glutamate receptor (iGluR) family members are integrated into supramolecular complexes that modulate their location and function at excitatory synapses. However, a lack of structural information beyond isolated receptors or fragments thereof currently limits the mechanistic understanding of physiological iGluR signaling. Here, we report structural and functional analyses of the prototypical molecular bridge linking postsynaptic iGluR δ2 (GluD2) and presynaptic β-neurexin 1 (β-NRX1) via Cbln1, a C1q-like synaptic organizer. We show how Cbln1 hexamers “anchor” GluD2 amino-terminal domain dimers to monomeric β-NRX1. This arrangement promotes synaptogenesis and is essential for d-serine–dependent GluD2 signaling in vivo, which underlies long-term depression of cerebellar parallel fiber–Purkinje cell (PF-PC) synapses and motor coordination in developing mice. These results lead to a model where protein and small-molecule ligands synergistically control synaptic iGluR function.

View Full Text

Stay Connected to Science