Research Articles

Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism

See allHide authors and affiliations

Science  12 Aug 2016:
Vol. 353, Issue 6300, pp. 664-669
DOI: 10.1126/science.aaf8070

A different gate design

The voltage-gated potassium channel Eag1 is overexpressed in tumor cells from a range of cancers, and inhibiting Eag1 reduces tumor growth. Whicher and Mackinnon determined the structure of a mammalian Eag1 bound to the inhibitor calmodulin at 3.78 Å resolution (see the Perspective by Toombes and Swartz). The organization of the voltage-sensing and pore domains differs from that of other potassium channels, indicating that the gating mechanism is distinct. The structure also shows how the channel can be closed by a ligand, independently of the position of the voltage sensor.

Science, this issue p. 664; see also p. 646

View Full Text