You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
CO takes the lead to make β-lactam rings
Strained β-lactam rings are a key feature of penicillin and some other drugs. Willcox et al. designed a versatile route to these four-membered ring motifs through the palladiumcatalyzed coupling of carbon monoxide with secondary amines. The bulky carboxylate ligand appears to facilitate preliminary CO incorporation into a Pd anhydride, which is then attacked by the amine to set up ring closure via C–H activation. This approach broadens the substrate scope compared with a previous scheme in which C–H activation preceded CO insertion.
Science, this issue p. 851
Abstract
Methods for the synthesis and functionalization of amines are intrinsically important to a variety of chemical applications. We present a general carbon-hydrogen bond activation process that combines readily available aliphatic amines and the feedstock gas carbon monoxide to form synthetically versatile value-added amide products. The operationally straightforward palladium-catalyzed process exploits a distinct reaction pathway, wherein a sterically hindered carboxylate ligand orchestrates an amine attack on a palladium anhydride to transform aliphatic amines into β-lactams. The reaction is successful with a wide range of secondary amines and can be used as a late-stage functionalization tactic to deliver advanced, highly functionalized amine products of utility for pharmaceutical research and other areas.