Phytochrome B integrates light and temperature signals in Arabidopsis

See allHide authors and affiliations

Science  18 Nov 2016:
Vol. 354, Issue 6314, pp. 897-900
DOI: 10.1126/science.aaf5656

Combining heat and light responses

Plants integrate a variety of environmental signals to regulate growth patterns. Legris et al. and Jung et al. analyzed how the quality of light is interpreted through ambient temperature to regulate transcription and growth (see the Perspective by Halliday and Davis). The phytochromes responsible for reading the ratio of red to far-red light were also responsive to the small shifts in temperature that occur when dusk falls or when shade from neighboring plants cools the soil.

Science, this issue p. 897, p. 886; see also p. 832


Ambient temperature regulates many aspects of plant growth and development, but its sensors are unknown. Here, we demonstrate that the phytochrome B (phyB) photoreceptor participates in temperature perception through its temperature-dependent reversion from the active Pfr state to the inactive Pr state. Increased rates of thermal reversion upon exposing Arabidopsis seedlings to warm environments reduce both the abundance of the biologically active Pfr-Pfr dimer pool of phyB and the size of the associated nuclear bodies, even in daylight. Mathematical analysis of stem growth for seedlings expressing wild-type phyB or thermally stable variants under various combinations of light and temperature revealed that phyB is physiologically responsive to both signals. We therefore propose that in addition to its photoreceptor functions, phyB is a temperature sensor in plants.

View Full Text

Stay Connected to Science