Generation of influenza A viruses as live but replication-incompetent virus vaccines

See allHide authors and affiliations

Science  02 Dec 2016:
Vol. 354, Issue 6316, pp. 1170-1173
DOI: 10.1126/science.aah5869

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Protecting by changing the code

Live attenuated vaccines can be very potent, but their potential to revert to their pathogenic form limits their use. In an attempt to get around this, Si et al. expanded the genetic code of influenza A viruses. They propagated viruses that were mutated to encode premature termination codons (PTCs) in a cell line engineered to be able to express these flu proteins. Despite not being able to replicate in conventional cells, PTC-containing viruses were highly immunogenic and protected mice, guinea pigs, and ferrets against influenza challenge.

Science, this issue p. 1170


The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)–harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell–mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.

View Full Text

Stay Connected to Science