Mind the gap: Neural coding of species identity in birdsong prosody

See allHide authors and affiliations

Science  09 Dec 2016:
Vol. 354, Issue 6317, pp. 1282-1287
DOI: 10.1126/science.aah6799

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Birds of a feather sing together

How do birds know that a song that they hear is from a member of their own species, and how do they learn their songs in the first place? Araki et al. identified two types of brain cells involved in how finches learn their songs (see the Perspective by Tchernichovski and Lipkind). When zebra finches were raised by Bengalese finch foster parents, they learned a song whose morphology resembled that of their foster father. However, the temporal structure remained zebra finch–specific, suggesting that it is innate. Gadagkar et al. recorded activity in specific dopamine neurons in singing zebra finches while controlling perceived song quality with distorted auditory feedback. This distorted feedback represented worse performance than predicted and resulted in negative prediction errors. These findings suggest again that finches have an innate internal goal for their learned songs.

Science, this issue p. 1282, p. 1234; see also p. 1278


Juvenile songbirds learn vocal communication from adult tutors of the same species but not from adults of other species. How species-specific learning emerges from the basic features of song prosody remains unknown. In the zebra finch auditory cortex, we discovered a class of neurons that register the silent temporal gaps between song syllables and are distinct from neurons encoding syllable morphology. Behavioral learning and neuronal coding of temporal gap structure resisted song tutoring from other species: Zebra finches fostered by Bengalese finch parents learned Bengalese finch song morphology transposed onto zebra finch temporal gaps. During the vocal learning period, temporal gap neurons fired selectively to zebra finch song. The innate temporal coding of intersyllable silent gaps suggests a neuronal barcode for conspecific vocal learning and social communication in acoustically diverse environments.

View Full Text

Stay Connected to Science