Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands

See allHide authors and affiliations

Science  13 Jan 2017:
Vol. 355, Issue 6321, pp. 173-176
DOI: 10.1126/science.aai8291

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Soil biota and plant diversity

Soil biota, including symbionts such as mycorrhizal fungi and nitrogen-fixing bacteria, as well as fungal and bacterial pathogens, affect terrestrial plant diversity and growth patterns (see the Perspective by van der Putten). Teste et al. monitored growth and survival in Australian shrubland plant species paired with soil biota from plants of the same species and from other plants that use different nutrient acquisition strategies. Plant-soil feedbacks appear to drive local plant diversity through interactions between the different types of plants and their associated soil biota. Bennett et al. studied plant-soil feedbacks in soil and seeds from 550 populations of 55 species of North American trees. Feedbacks ranged from positive to negative, depending on the type of mycorrhizal association, and were related to how densely the same species occurred in natural populations.

Science, this issue p. 134, p. 173; see also p. 181


Soil biota influence plant performance through plant-soil feedback, but it is unclear whether the strength of such feedback depends on plant traits and whether plant-soil feedback drives local plant diversity. We grew 16 co-occurring plant species with contrasting nutrient-acquisition strategies from hyperdiverse Australian shrublands and exposed them to soil biota from under their own or other plant species. Plant responses to soil biota varied according to their nutrient-acquisition strategy, including positive feedback for ectomycorrhizal plants and negative feedback for nitrogen-fixing and nonmycorrhizal plants. Simulations revealed that such strategy-dependent feedback is sufficient to maintain the high taxonomic and functional diversity characterizing these Mediterranean-climate shrublands. Our study identifies nutrient-acquisition strategy as a key trait explaining how different plant responses to soil biota promote local plant diversity.

View Full Text

Stay Connected to Science