You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
How to get to place B
We constantly navigate around our environment. This means moving from our current location, place A, to a new goal, place B. We have recently learned much about spatial maps in the brain in which place cells indicate current location. However, it is unclear how navigational goals are represented in the brain. Sarel et al. describe a group of neurons in the brains of bats that are tuned to goal direction and distance relative to the bat's current position as it flies toward its goal. The finding elucidates the computations involved in spatial navigation.
Science, this issue p. 176
Abstract
To navigate, animals need to represent not only their own position and orientation, but also the location of their goal. Neural representations of an animal’s own position and orientation have been extensively studied. However, it is unknown how navigational goals are encoded in the brain. We recorded from hippocampal CA1 neurons of bats flying in complex trajectories toward a spatial goal. We discovered a subpopulation of neurons with angular tuning to the goal direction. Many of these neurons were tuned to an occluded goal, suggesting that goal-direction representation is memory-based. We also found cells that encoded the distance to the goal, often in conjunction with goal direction. The goal-direction and goal-distance signals make up a vectorial representation of spatial goals, suggesting a previously unrecognized neuronal mechanism for goal-directed navigation.