Localized aliphatic organic material on the surface of Ceres

See allHide authors and affiliations

Science  17 Feb 2017:
Vol. 355, Issue 6326, pp. 719-722
DOI: 10.1126/science.aaj2305

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Organic compounds detected on Ceres

Water and organic molecules were delivered to the early Earth by the impacts of comets and asteroids. De Sanctis et al. examined infrared spectra taken by the Dawn spacecraft as it orbited Ceres, the largest object in the asteroid belt (see the Perspective by Küppers). In some small patches on the surface, they detected absorption bands characteristic of aliphatic organic compounds. The authors ruled out an external origin, such as an impact, suggesting that the material must have formed on Ceres. Together with other compounds detected previously, this supports the existence of a complex prebiotic chemistry at some point in Ceres' history.

Science, this issue p. 719; see also p. 692


Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

View Full Text