PerspectiveApplied Physics

Powering up perovskite photoresponse

See allHide authors and affiliations

Science  24 Mar 2017:
Vol. 355, Issue 6331, pp. 1260-1261
DOI: 10.1126/science.aam7154

You are currently viewing the summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution


The most notable scientific milestone in photovoltaics in the past several years is the emergence of solar cells based on hybrid organic-inorganic perovskite materials. While conventional silicon and thin-film solar cells have seen steady improvements in their power-conversion efficiencies (PCEs) spanning several decades, hybrid perovskite solar cells have already reached a certified 22.1% PCE (1), matching conventional solar cell technologies in only a few years since their first device architecture was tested. Setting the stage for a disruptive technology in the field of photovoltaics is the seemingly winning combination of properties of hybrid perovskite materials: high absorption coefficient and a tunable energy band gap in wavelengths ideal for solar cells; long diffusion lengths and lifetimes for photogenerated charge carriers, which easily dissociate into efficiently collected electrons and holes; Earth-abundant elemental composition; and their compatibility with low-cost and low-temperature fabrication methods (25). On page 1288 of this issue, Blancon et al. (6) report on the observation of an enhanced photoresponse for layered perovskite materials. The results add, literally, a new dimension to the further development of high-performance perovskite solar cells.