Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly

See allHide authors and affiliations

Science  28 Apr 2017:
Vol. 356, Issue 6336, pp. 411-414
DOI: 10.1126/science.aai8801

Pattern formation in the brain

Neurons in the developing brain cooperate to build circuits. Mountoufaris et al. found that ∼50 variable protocadherin genes support a combinatorial identity code that allows millions of olfactory neuron axons to sort into ∼2000 glomeruli. Sharing olfactory receptors drives axons to one glomerulus, and protocadherin diversity allows the multiple axons to touch each other as they converge. On the other hand, Chen et al. found that a single C-type protocadherin underlies the tiled distribution of serotonergic neurons throughout the central nervous system. These neurons, which share protocadherin identity, enervate broad swaths evenly without touching neighboring neurons.

Science, this issue p. 411, p. 406


The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single–tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.

View Full Text