Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion

See allHide authors and affiliations

Science  28 Apr 2017:
Vol. 356, Issue 6336, pp. 415-418
DOI: 10.1126/science.aak9991

Zinc can compete with lithium

Although lithium-based batteries are ubiquitous, there are still challenges related to their longevity and safety, as well as concerns about material availability. Aqueous rechargeable batteries based on zinc might provide an alternative, but they have been plagued by the formation of dendrites during cycling. Parker et al. show that when zinc is formed into three-dimensional sponges, it can be used with nickel to form primary batteries that allow for deep discharge. Alternatively, the sponges can be used to produce secondary batteries that can be cycled thousands of times and can compete with lithium ion cells.

Science, this issue p. 415


The next generation of high-performance batteries should include alternative chemistries that are inherently safer to operate than nonaqueous lithium-based batteries. Aqueous zinc-based batteries can answer that challenge because monolithic zinc sponge anodes can be cycled in nickel–zinc alkaline cells hundreds to thousands of times without undergoing passivation or macroscale dendrite formation. We demonstrate that the three-dimensional (3D) zinc form-factor elevates the performance of nickel–zinc alkaline cells in three fields of use: (i) >90% theoretical depth of discharge (DODZn) in primary (single-use) cells, (ii) >100 high-rate cycles at 40% DODZn at lithium-ion–commensurate specific energy, and (iii) the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles.

View Full Text