You are currently viewing the editor's summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
How much water is in that exoplanet?
Thousands of exoplanets have been identified, but little is known about their atmospheres, especially for bodies smaller than Jupiter. The extent and composition of an atmosphere can provide evidence for how an exoplanet formed. Wakeford et al. used the Hubble and Spitzer space telescopes to measure the spectrum of the atmosphere around HAT-P-26b, a Neptune-sized exoplanet discovered in 2011. They detected signatures of water and clouds; this allowed them to constrain the atmospheric composition, which appears not to have been altered substantially since it formed.
Science, this issue p. 628