You are currently viewing the summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Summary
The 1919 detection of the apparent displacement of background stars near the edge of the eclipsed Sun's disk provided one of the first convincing proofs of Einstein's theory of general relativity (1, 2). Almost 100 years later, Sahu et al. report on page 1046 of this issue the first measurement of the gravitational deflection of starlight by a star other than the Sun (3). Using the superior angular resolution of the Hubble Space Telescope (HST), they measured shifts in the apparent position of a distant background star as a nearby dense stellar remnant called a white dwarf passed almost in front of it in 2014. Because of the relative distances involved, the deflections they observed were about 1000 times smaller than those seen in 1919, but also in agreement with general relativity theory.