Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking

See allHide authors and affiliations

Science  05 Jan 2018:
Vol. 359, Issue 6371, pp. 72-76
DOI: 10.1126/science.aam7588

A healing squeeze

The very long molecules found in synthetic polymers, and their tendency to entangle and partially crystallize, impart many of the polymers' useful properties. However, these same characteristics also mean that chain dynamics are slow, which impedes potential self-healing. Yanagisawa et al. developed a family of ether-thiourea linear polymers that form hydrogen-bonded networks and still manage to stay amorphous. The polymers are stiff, showing the strength of the hydrogen bonding; however, because these bonds can easily reform, the polymer is also able to self-heal when compressed.

Science, this issue p. 72


Expanding the range of healable materials is an important challenge for sustainable societies. Noncrystalline, high-molecular-weight polymers generally form mechanically robust materials, which, however, are difficult to repair once they are fractured. This is because their polymer chains are heavily entangled and diffuse too sluggishly to unite fractured surfaces within reasonable time scales. Here we report that low-molecular-weight polymers, when cross-linked by dense hydrogen bonds, yield mechanically robust yet readily repairable materials, despite their extremely slow diffusion dynamics. A key was to use thiourea, which anomalously forms a zigzag hydrogen-bonded array that does not induce unfavorable crystallization. Another key was to incorporate a structural element for activating the exchange of hydrogen-bonded pairs, which enables the fractured portions to rejoin readily upon compression.

View Full Text