Research Article

A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow

See allHide authors and affiliations

Science  26 Jan 2018:
Vol. 359, Issue 6374, pp. 429-434
DOI: 10.1126/science.aap9112

A reaction screen in flowing solvent

Chemists charged with manufacturing pharmaceuticals have recently been exploring the efficiency advantages of continuous flow techniques. Perera et al. now show that a flow apparatus can also accelerate reaction optimization earlier in the drug discovery process. They modified a high-performance liquid chromatography system to screen a wide variety of solvent, ligand, and base combinations to optimize carbon-carbon bond formation. Injecting stock solution aliquots of the catalyst and reactants into a carrier solvent stream let the authors vary the main solvent efficiently and scale up the optimal conditions for product isolation.

Science, this issue p. 429


The scarcity of complex intermediates in pharmaceutical research motivates the pursuit of reaction optimization protocols on submilligram scales. We report here the development of an automated flow-based synthesis platform, designed from commercially available components, that integrates both rapid nanomole-scale reaction screening and micromole-scale synthesis into a single modular unit. This system was validated by exploring a diverse range of reaction variables in a Suzuki-Miyaura coupling on nanomole scale at elevated temperatures, generating liquid chromatography–mass spectrometry data points for 5760 reactions at a rate of >1500 reactions per 24 hours. Through multiple injections of the same segment, the system directly produced micromole quantities of desired material. The optimal conditions were also replicated in traditional flow and batch mode at 50- to 200-milligram scale to provide good to excellent yields.

View Full Text

Stay Connected to Science