Probing optically silent superfluid stripes in cuprates

See allHide authors and affiliations

Science  02 Feb 2018:
Vol. 359, Issue 6375, pp. 575-579
DOI: 10.1126/science.aan3438

A nonlinear peek into stripes

In many theoretical models of high-temperature superconductors, remnants of superconductivity persist to temperatures higher than the transition temperature, TC. Rajasekaran et al. used nonlinear terahertz spectroscopy to probe this region of the phase diagram of a cuprate superconductor that is well known for a stripe phase that appears for certain doping levels (see the Perspective by Ergeçen and Gedik). For a sample deep in the stripe phase, a large nonlinear signal persisted from the superconducting region up to temperatures much higher than TC. The findings suggest the formation of a peculiar spatially modulated superconducting state called the pair-density wave.

Science, this issue p. 575; see also p. 519


Unconventional superconductivity in the cuprates coexists with other types of electronic order. However, some of these orders are invisible to most experimental probes because of their symmetry. For example, the possible existence of superfluid stripes is not easily validated with linear optics, because the stripe alignment causes interlayer superconducting tunneling to vanish on average. Here we show that this frustration is removed in the nonlinear optical response. A giant terahertz third harmonic, characteristic of nonlinear Josephson tunneling, is observed in La1.885Ba0.115CuO4 above the transition temperature Tc = 13 kelvin and up to the charge-ordering temperature Tco = 55 kelvin. We model these results by hypothesizing the presence of a pair density wave condensate, in which nonlinear mixing of optically silent tunneling modes drives large dipole-carrying supercurrents.

View Full Text