Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

See allHide authors and affiliations

Science  09 Feb 2018:
Vol. 359, Issue 6376, pp. 675-679
DOI: 10.1126/science.aao0865

Crystallography of sensitive materials

High-resolution transmission electron microscopy is an invaluable tool for looking at the crystalline structures of many materials. However, the need for high beam doses, especially as a sample is rotated to find the crystal axes, can lead to damage, particularly in fragile materials. Zhang et al. combined a state-of-the-art direct-detection electron-counting camera with ways to limit the overall electron dose to analyze delicate materials such as metal organic frameworks. With this approach, they could see the benzene rings in a UiO-66 linker and the coexistence of ligand-free (metal-exposing) and ligand-capped surfaces in UiO-66 crystals.

Science, this issue p. 675


High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

View Full Text