Research Article

Carbothermal shock synthesis of high-entropy-alloy nanoparticles

See allHide authors and affiliations

Science  30 Mar 2018:
Vol. 359, Issue 6383, pp. 1489-1494
DOI: 10.1126/science.aan5412

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Nanoparticle synthesis gets a shock

Nanoparticles are useful in a wide range of applications such as catalysis, imaging, and energy storage. Yao et al. developed a method for making nanoparticles with up to eight different elements (see the Perspective by Skrabalak). The method relies on shocking metal salt-covered carbon nanofibers, followed by rapid quenching. The “carbothermal shock synthesis” can be tuned to select for nanoparticle size as well. The authors successfully created PtPdRhRuCe nanoparticles to catalyze ammonia oxidation.

Science, this issue p. 1489; see also p. 1467


The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

View Full Text

Stay Connected to Science