Bottom-up synthesis of multifunctional nanoporous graphene

See allHide authors and affiliations

Science  13 Apr 2018:
Vol. 360, Issue 6385, pp. 199-203
DOI: 10.1126/science.aar2009

Synthesizing graphene nanopores

Nanosize pores in graphene can make its electronic properties more favorable for transistor applications and may also be useful for molecular separations. Moreno et al. used Ullmann coupling to polymerize a dibromo-substituted diphenylbianthracene on a gold surface (see the Perspective by Sinitskii). Cyclodehydrogenation of the resulting polymer produced graphene nanoribbons, and cross-coupling of these structures created a nanoporous graphene sheet with pore sizes of about 1 nanometer. Scanning tunneling spectroscopy revealed an electronic structure in which semiconductor bands with an energy gap of 1 electron volt coexist with localized states created by the pores.

Science, this issue p. 199; see also p. 154


Nanosize pores can turn semimetallic graphene into a semiconductor and, from being impermeable, into the most efficient molecular-sieve membrane. However, scaling the pores down to the nanometer, while fulfilling the tight structural constraints imposed by applications, represents an enormous challenge for present top-down strategies. Here we report a bottom-up method to synthesize nanoporous graphene comprising an ordered array of pores separated by ribbons, which can be tuned down to the 1-nanometer range. The size, density, morphology, and chemical composition of the pores are defined with atomic precision by the design of the molecular precursors. Our electronic characterization further reveals a highly anisotropic electronic structure, where orthogonal one-dimensional electronic bands with an energy gap of ∼1 electron volt coexist with confined pore states, making the nanoporous graphene a highly versatile semiconductor for simultaneous sieving and electrical sensing of molecular species.

View Full Text