Catalytic enantioselective Minisci-type addition to heteroarenes

See allHide authors and affiliations

Science  27 Apr 2018:
Vol. 360, Issue 6387, pp. 419-422
DOI: 10.1126/science.aar6376

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Light and acid steer a radical addition

So-called Minisci reactions have been used for decades in pharmaceutical and agrochemical synthesis to make carbon-carbon bonds. The reactions link carbon radicals to the carbon centers adjacent to nitrogen in pyridine rings. Proctor et al. devised a method to steer these reactions to just one of two possible mirror-image products. To make the radicals, they prepared derivatives of widely available amino acids and then activated them with an iridium photocatalyst. At the same time, a chiral phosphoric acid catalyst was used to activate the pyridine and bias the reaction geometry.

Science, this issue p. 419


Basic heteroarenes are a ubiquitous feature of pharmaceuticals and bioactive molecules, and Minisci-type additions of radical nucleophiles are a leading method for their elaboration. Despite many Minisci-type protocols that result in the formation of stereocenters, exerting control over the absolute stereochemistry at these centers remains an unmet challenge. We report a process for addition of prochiral radicals, generated from amino acid derivatives, to pyridines and quinolines. Our method offers excellent control of both enantioselectivity and regioselectivity. An enantiopure chiral Brønsted acid catalyst serves both to activate the substrate and induce asymmetry, while an iridium photocatalyst mediates the required electron transfer processes. We anticipate that this method will expedite access to enantioenriched small-molecule building blocks bearing versatile basic heterocycles.

View Full Text